Button to scroll to the top of the page.

News

From the College of Natural Sciences
This tag contains 2 private blog which isn't listed here.
Meet the 32 Dean's Honored Graduates for 2019

Meet the 32 Dean's Honored Graduates for 2019

Dean's Honored Graduate is the highest honor awarded to graduating seniors in the College of Natural Sciences. Honorees exhibit excellence in the classroom as well as substantial achievement in scientific research, an independent intellectual pursuit, or exceptional service and leadership to the college and university. These outstanding students are among the graduating seniors also receiving College of Natural Sciences Distinctions this year.

Scientists Capture First-Ever Video of Body’s Safety Test for T-cells

Scientists Capture First-Ever Video of Body’s Safety Test for T-cells

For the first time, immunologists from The University of Texas at Austin have captured on video what happens when T-cells – the contract killers of the immune system, responsible for wiping out bacteria and viruses – undergo a type of assassin-training program before they get unleashed in the body. A new imaging technique that allowed for the videos, described today in the journal Nature Communications, holds promise for the fight against autoimmune disorders such as Type 1 diabetes.

Ten Students Receive Prestigious Federal Graduate Research Awards

Ten Students Receive Prestigious Federal Graduate Research Awards

Six graduate students and four undergraduates have received prestigious federal graduate research awards. Pictured are Stephanie Valenzuela, Thao Thanh Thi Nguyen, Logan Pearce, Caitlyn McCafferty, Taha Dawoodbhoy, Ian Rambo, Hadiqa Zafar, Zoe Boundy-Singer, Griffin Glenn, and Ariel Barr.

The National Science Foundation (NSF) and the U.S. Department of Energy (DOE) have awarded prestigious graduate research awards to 48 University of Texas at Austin students, including ten from the College of Natural Sciences.

The Tool Maker: The Double Life of Everett Stone

The Tool Maker: The Double Life of Everett Stone

A story about how a blacksmith (Everett Stone) learned to forge new tools in the fight against cancer. Photo by Marsha Miller.

For Everett Stone, being a cancer researcher is not so different from being a blacksmith. "I feel like an overarching theme in my career is that I've made many, many tools. Some of them are good enough to be medicines," he says.

Antibodies From Earlier Exposures Affect Response To New Flu Strains

Antibodies From Earlier Exposures Affect Response To New Flu Strains

We are repeatedly exposed to the influenza virus via infections, vaccinations and our communal environments. The annual flu shot is believed to be the best line of defense, and doctors recommend vaccinations every year because the flu virus is in a constant state of adaptation and mutation, rendering older vaccines obsolete.

Scientists Synthesize a New Type of DNA with Extra Building Blocks

Scientists Synthesize a New Type of DNA with Extra Building Blocks

A DNA double helix built from eight hachimoji building blocks: G (green), A (red), C (dark blue), T (yellow), B (cyan), S (pink), P (purple) and Z (orange). The first four building blocks are found in human DNA; the last four are synthetic. Each strand of the double helix has the sequence CTTAPCBTASGZTAAG. Image credit: Millie Georgiadis/ Indiana University School of Medicine.

A team of synthetic biologists led by Steven Benner at the Foundation for Applied Molecular Evolution—and including Andy Ellington at The University of Texas at Austin—have synthesized a new kind of DNA that uses eight building blocks instead of the four found in all earthly life. Reporting today in the journal Science, the researchers suggest the new eight-letter DNA could find applications in medicine and biological computing. The finding also has implications for how scientists think about life elsewhere in the universe.

HIV Hidden in Patients’ Cells Can Now Be Accurately Measured

HIV Hidden in Patients’ Cells Can Now Be Accurately Measured

This human T cell (blue) is under attack by HIV (yellow), the virus that causes AIDS. The virus specifically targets T cells, which play a critical role in the body's immune response against invaders like bacteria and viruses. Credit: Seth Pincus, Elizabeth Fischer and Austin Athman, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Until now, researchers haven't been able to accurately quantify a latent form of HIV that persists in patients' immune cells. This hampers doctors' ability to assess the effectiveness of a particular treatment and select better alternatives.

Scientists Uncover RNA Silencing Technique to Change Seed Size in Plants

Scientists Uncover RNA Silencing Technique to Change Seed Size in Plants

In a development with promising implications for crop farmers in the U.S. and around the world, scientists at The University of Texas at Austin have figured out how to get some plants to produce nearly one-third bigger seeds.

Scientists Coax Proteins to Form Synthetic Structures with Method that Mimics Nature

Scientists Coax Proteins to Form Synthetic Structures with Method that Mimics Nature

As a proof of concept, a team of researchers at the University of Texas at Austin built tiny structures that resemble two doughnuts stacked on top of each other by applying electrical charges to specific spots on naturally occurring proteins. Credit: University of Texas at Austin.

Scientists have long dreamed of creating synthetic structures out of the same raw material that nature uses in living systems — proteins — believing such an advance would allow for the development of transformative nanomachines, for example, molecular cages that precisely deliver chemotherapy drugs to tumors or photosynthetic systems for harvesting energy from light. Now a team of biologists from The University of Texas at Austin and the University of Michigan have invented a way to build synthetic structures from proteins, and just as in nature, the method is simple and could be used for a variety of purposes.

Bacteria Help Scientists Discover Human Cancer-Causing Proteins

Bacteria Help Scientists Discover Human Cancer-Causing Proteins

Researchers genetically modified E coli bacteria to fluoresce red when DNA was damaged. Then, they overexpressed each of the bacteria’s 4,000 genes individually and determined which proteins made bacteria glow red. With these bacterial proteins as a guide, they identified more than 100 analogous human proteins that are now implicated in DNA damage and initiation of cancer. Image credit: Jun Xia.

A team led by researchers at The University of Texas at Austin and Baylor College of Medicine has applied an unconventional approach involving bacteria to discover human proteins that can lead to DNA damage and promote cancer. This could lead to new tests to identify people who are likely to develop cancer. Reported in the journal Cell, the study also proposes biological mechanisms by which these proteins can damage DNA, opening possibilities for future cancer treatments.