As part of an ongoing tradition, this past spring we invited faculty, staff and students in the College of Natural Sciences community to send us images that celebrated the wondrous beauty of science and the scientific process. We were searching for those moments where science and art meld and become one.
Areas of the Arctic play a larger role than previously thought in the global nitrogen cycle—the process responsible for keeping a critical element necessary for life flowing between the atmosphere, the land and oceans. The finding is reported in a new study of the continental shelf in the Arctic Ocean published Wednesday in the journal Nature Communications.
Ocean warming is occurring at such a rapid rate that fish are searching for cooler waters to call home.
Arley Muth, a first-year Ph.D. student in the Department of Marine Science, was one of 52 graduate students nationwide who were recently awarded a Science to Achieve Results (STAR) Graduate Fellowship from the US Environmental Protection Agency (EPA).
Weddell seals spend 95 percent of their time swimming under Antarctic sea ice. They can dive to great depths and hold their breath for stretches as long as an hour at a time, even while pursuing their prey at rapid speeds. Despite this physical prowess, the seals are just as vulnerable as humans to drowning if they can't find a breathing hole in the underwater darkness.
Microbiologists have cracked the genetic code of how bacteria broke down oil to help clean up the Deepwater Horizon oil spill. The findings, published in the journal Nature Microbiology, reveal that some bacteria have far greater potential for consuming oil than was previously known.
An international team of researchers, including Brett Baker from The University of Texas Marine Science Institute, has made the most comprehensive tree of life based on genomes, greatly expanding our view of the diversity of life on the planet. Using genetic data collected in recent years, the researchers found a group of bacteria that are so diverse genetically that they represent half of all the diversity of bacteria on the planet.
An international team led by microbiologists Brett Baker of The University of Texas at Austin and Thijs Ettema of Uppsala University in Sweden have discovered genetic evidence that a group of subsurface microbes consumes carbon monoxide, a weak greenhouse gas, to produce energy. These microbes, first discovered in a gold mine two miles below South Africa, live in environments devoid of oxygen and light. So far, no one has successfully grown them in the laboratory, so it wasn't clear how these microbes generate energy.