When the two atomically-thin sheets of this new material are rotated slightly with respect to each other, an interference pattern known as a moiré pattern appears. This feature appears to enable Li’s new material to act as a series of single photon emitters. Credit: University of Texas at Austin.
As computers advance, encryption methods currently used to keep everything from financial transactions to military secrets secure might soon be useless, technology experts warn. Reporting today in the journal Nature, a team of physicists and engineers led by University of Texas at Austin physics professor Xiaoqin Elaine Li report they have created a material with light-emitting properties that might enable hack-proof communications, guaranteed by the laws of quantum mechanics.
Over the past few decades, the cost of storing data on hard disk drives (HDDs) has fallen dramatically, enabling revolutions in personal, scientific and cloud computing and allowing for storage of ever-greater amounts of data. But even as data collection continues to skyrocket, the cost-per-bit trend has been flattening out, leading to calls for new innovations in technology.
Numerical simulations of gravitational waves caused by the collision of two black holes. Credit: NASA/Ames Research Center/C. Henze
The scientists looking for gravitational waves report that last year they observed four additional ripples in space-time. During about a nine-month period, scientists involved with the National Science Foundation's LIGO (Laser Interferometer Gravitational-Wave Observatory) collaboration and the European-based Virgo gravitational-wave detector encountered eight gravitational waves—twice as many as previously reported—including a newly identified binary black hole that was the most precisely located in the sky to date.
The Texas Petawatt Laser, among the most powerful in the U.S., will be part of a new national network funded by the Dept. of Energy, named LaserNetUS. Credit: University of Texas at Austin.
The University of Texas at Austin will be a key player in LaserNetUS, a new national network of institutions operating high-intensity, ultrafast lasers. The overall project, funded over two years with $6.8 million from the U.S. Department of Energy's Office of Fusion Energy Sciences, aims to help boost the country's global competitiveness in high-intensity laser research.
World-renowned physicist E.C. George Sudarshan died of natural causes this week at the age of 86. A professor of physics at The University of Texas at Austin from 1969 to 2016, he made many important contributions to theoretical physics. Ennackal Chandy George Sudarshan was born in Kottayam, Kerala, India on Sep. 16, 1931. He received his Ph.D. de...
Using a computer simulation that models the physical and chemical interactions of cancerous cells (colored dots), researchers discovered that over time, tumors develop a distinctive two-part structure: slow moving cells moving randomly in a dense core (blue and purple), surrounded by a band of cells moving faster and more directly outward (green, yellow, red). Arrows indicate direction of motion. The image at right is the same tumor cut in half to reveal the inner structure. Image credit: Anne Bowen, Texas Advanced Computing Center at the University of Texas at Austin.
Scientists have recently discovered a method in cancer's madness. Before now, they've been perplexed by how cancer cells, growing alongside healthy cells, often spread much faster into surrounding tissue than randomness would dictate. It's as if cancerous cells are intentionally moving directly outward, invading healthy tissue.
Gregory Fiete has been named a Simons Fellow in Theoretical Physics. Photo by Alex Wang.
Gregory Fiete, associate professor of physics at The University of Texas at Austin, has been named one of this year's 12 Simons Fellows in Theoretical Physics by the Simons Foundation. The fellowship program provides researchers a full year of academic leave, enabling recipients to focus solely on research for the long periods often necessary for significant advances.
It's difficult to conceptualize a world where humans could casually manipulate nanoscale objects at will or even control their own biological matter at a cellular level with light.
Using a novel imaging technique, a team of U.S. and German researchers found that wiggling the walls of a box packed with sand-sized glass spheres causes the spheres to form crystal structures similar to those formed when liquids freeze. By increasing the order among grains, the grains took up less space. One possible application would be to pack sand or other granular material more densely to save on shipping costs.
Ground is broken! Attending the underground ceremony today were, from left: Fermilab Director Nigel Lockyer; Executive Director of Programmes Grahame Blair, Science and Technology Facilities Council; Professor Sergio Bertolucci, National Institute for Nuclear Physics in Italy; Director for International Relations Charlotte Warakaulle, CERN; Rep. Randy Hultgren, Illinois; Rep. Kristi Noem, South Dakota; Sen. Mike Rounds, South Dakota; Sen. John Thune, South Dakota; Associate Director of Science for High-Energy Research Jim Siegrist, U.S. Department of Energy; Deputy Assistant to the President and Deputy U.S. Chief Technology Officer Michael Kratsios; South Dakota Governor Dennis Daugaard; Project Manager Scott Lundgren, Kiewit/Alberici; Executive Director Mike Headley, Sanford Underground Research Facility; and Chair of the Board Casey Peterson, South Dakota Science and Technology Authority. Photo: Reidar Hahn, Fermilab.
With the turning of a shovelful of earth a mile underground, a new era in international particle physics research officially begins.
The Muon g-2 magnet ring with instrumentation, awaiting muons. Credit: Fermilab.
Physicists have been puzzled ever since an experiment at Brookhaven National Laboratory in the late 1990s found that muons, elementary particles produced when cosmic rays hit our atmosphere, have slightly different magnetic properties than predicted. If true, it could mean a shakeup is in store for the theoretical framework that physicists use to describe the universe.
Read our publication, The Texas Scientist, a digest covering the people and groundbreaking discoveries that make the College of Natural Sciences one of the most amazing and significant places on Earth.