Button to scroll to the top of the page.
Taylor, David

David W Taylor Jr

Associate Professor
Molecular Biosciences

Marvin L. Hackert Professorship in Biochemistry and Structural Biology (Fellow)

Directly visualizing molecular machines

dtaylor@utexas.edu

Phone: 512-471-9156

Office Location
NHB 4.121

Postal Address
100 E 24TH ST
AUSTIN, TX 78712

Post-doctoral Training

 2014–2016      California Institute for Quantitative Biosciences

                       University of California, Berkeley

                       Title: “Structure and Function of CRISPR RNA-guided surveillance complexes in bacteria”

                       Advisors: Dr. Eva Nogales and Dr. Jennifer A. Doudna

Education     

2013                Yale University                                                            Ph.D., with distinction

                        Molecular Biophysics and Biochemistry

                        Advisor: Dr. Hong-Wei Wang

2010                Yale University                                                            M.Phil. 

                        Molecular Biophysics and Biochemistry

2008                Syracuse University                                                   B.S., summa cum laude        

                        Biochemistry

Our research focuses on how macromolecular machines assemble and function. Our current interests include understanding the structural basis for CRISPR RNA-guided adaptive immunity in prokaryotes and genome maintenance and double-strand DNA break repair in eukaryotes. To accomplish these goals, we directly visualize the structures of these protein-nucleic acid complexes using cryo-electron microscopy.

  1. E.J. Verbeke, A.L. Mallam, K. Drew, E.M. Marcotte, D.W. Taylor. (2018) Classification of single particles from human cell extract reveals distinct structures.Cell Reports 24,259-268.
  2. Lee, Y. Zhou, D.W. Taylor, D.G. Sashital. (2018) Cas4-dependent prespacer processing ensures high-fidelity programming of CRISPR arrays. Mol. Cell70, 48-49.
  3. S. Gong, H.H. Yu, K.A. Johnson, D.W. Taylor. (2018) DNA unwinding is the primary determinant of CRISPR-Cas9 activity. Cell Reports22, 359–371.
  4. M.L. Hochstrasser*, D.W. Taylor*, J.E. Kornfeld*, E. Nogales, J.A. Doudna. (2016) Structure and assembly of a minimal CRISPR-Cascade. Mol. Cell in press. *These authors contributed equally to this work. Co-corresponding authors.
  5. W.S.V. Kip, H. Shigematsu, D.W. Taylor, S.J. Baserga (2016) Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs. Nucleic Acids Res. Epub 24 June 2016.
  6. F. Jiang*, D.W. Taylor*, J.S. Chen, J.E. Kornfeld, K. Zhou, A.J. Thompson, E. Nogales, J.A. Doudna. (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867-871. *These authors contributed equally to this work.
  7. N. Miyazaki*, D.W. Taylor*, G.S. Hansman, K. Murata. (2016). Antigenic and cryo-electron microscopy structure analysis of a chimeric sapovirus capsid J. Virol. 90, 2664-2675. *These authors contributed equally to this work.
  8. R.J. Tomko Jr., D.W. Taylor, Z.A. Chen, H.W. Wang, J. Rappsilber, M. Hochstrasser. (2015) A single α-helix drives extensive remodeling of the proteasomal lid and completion of regulatory particle assembly. Cell 163, 432-444.
  9. D.W. Taylor*, Y. Zhu*, R.H.J. Staals, J.E. Kornfeld, A. Shinkai, J. van der Oost, E. Nogales, J.A. Doudna. (2015) Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science 348, 581-585. *These authors contributed equally to this work.
  10. A.V. Wright*, S.H. Sternberg*, D.W. Taylor, B.T. Staahl, J.A. Bardales, J.E. Kornfeld, J.A. Doudna. (2015) Rational design of a split-Cas9 enzyme complex. Proc. Nat. Acad. Sci. 112, 2984-2989. *These authors contributed equally to this work.
  11. R.H.J. Staals*, Y. Zhu*, D.W. Taylor*, J.E. Kornfeld, K. Sharma, A. Barendregt, J.J. Koehorst, M. Vlot, N. Neupane, K. Varossieau, K. Sakamoto, T. Suzuki, N. Dohmae, S. Yokoyama, P.J. Schaap, H. Urlaub, A.J.R. Heck, E. Nogales, J.A. Doudna, A. Shinkai, J. van der Oost. (2014) RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus. Mol. Cell 56, 518-530. *These authors contributed equally to this work.
  12. M.L. Hochstrasser*, D.W. Taylor*, P. Bhat, C.K. Guegler, S.H. Sternberg, E. Nogales, J.A. Doudna. (2014) CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc. Nat. Acad. Sci. 111, 6618–6623. *These authors contributed equally to this work.
  13. M. Jinek*, F. Jiang*, D.W. Taylor*, S.H. Sternberg*, E. Kaya, S.H. Sternberg, E. Ma, C. Anders, M. Hauer, K. Zhou, S. Lin, M. Kaplan, A.T. Iavarone, E. Charpentier, E. Nogales, J.A. Doudna. (2014) Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation. Science 343, 1247997. *These authors contributed equally to this work.
  14. R.H.J. Staals*, Y. Agari*, S. Maki-Yonekura*, Y. Zhu, D.W. Taylor, E. van Duijn, A. Barendregt, M. Vlot, J.J. Koehorst, K. Sakamoto, A. Masuda, N. Dohmae, P.J. Schaap, J.A. Doudna, A.J.R. Heck, K. Yonekura, J. van der Oost, A. Shinkai. (2013) Structure and activity of an RNA-targeting Type III-B CRISPR-Cas complex in Thermus thermophilus. Mol. Cell 52, 135-145. *These authors contributed equally to this work.
  15. S.L. Wolin, C. Belair, X. Chen, S. Sim, D.W. Taylor, H.W. Wang. (2013) Noncoding Y RNAs as Tethers and Gates: Insights from Bacteria. RNA Biol. 10, 1602-1608.
  16. D.W. Taylor*, E. Ma*, H. Shigematsu*, M.A. Cianfrocco, C.N. Noland, K. Nagayama, E. Nogales, J.A. Doudna, H.W. Wang. (2013) Substrate-specific structural rearrangements of human Dicer. Nat. Stuct. Mol. Biol. 20, 662-670. *These authors contributed equally to this work.
  17. X. Chen, D.W. Taylor, C.C. Fowler, J.E. Galan, H.W. Wang, S.L. Wolin. (2013) An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell 153, 166-177.
  18. K.R. Bower-Phipps, D.W. Taylor, H.W. Wang, S.J. Baserga. (2012) The box C/D sRNP dimeric architecture is conserved across domain Archaea. RNA 18, 1553-1562.
  19. G.S. Hansman, D.W. Taylor, J.S. McLellan, T.J. Smith, I. Georgiev, J.R.H. Tame, S.Y. Park, M. Yamazaki, F. Gondaira, M. Miki, K. Katayama, K. Murata, P.D. Kwong. (2012) Structural basis for broad detection of genogroup II noroviruses by a monoclonal antibody that binds to a site occluded in the viral particle. J. Virol. 86, 3635-3646.
  20. M.F. Roberts, D.W. Taylor, V.M. Unger. (2011) Two modes of interaction between the membrane-embedded TARP stargazin’s C-terminal domain and the bilayer visualized by electron crystallography. J. Struct. Biol. 174, 542-551.
  21. D. Cifuentes, H. Xue, D.W. Taylor, H. Patnode, Y. Mishima, S. Cheloufi, E. Ma, S. Mane, G.J. Hannon, N.D. Lawson, S.A. Wolfe, A.J. Giraldez. (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694-1698.
  22. H.W. Wang, C. Noland*, B. Siridechadilok*, D.W. Taylor*, E. Ma, K. Felderer, J.A. Doudna, E. Nogales. (2009) Structural insights into RNA processing by the human RISC-loading complex. Nat. Stuct. Mol. Biol. 16, 1148-1153. *These authors contributed equally to this work.

     *These authors contributed equally to this work.

CPRIT Scholar in Cancer Research, Cancer Prevention and Research Institute of Texas

Division of Biochemistry, Biophysics, and Structural Biology Outstanding Postdoc Award, University of California Berkeley

Damon Runyon Fellow, Damon Runyon Cancer Research Foundation

Mary Ellen Jones Dissertation Prize, Yale University

AAAS/Science Program for Excellence in Science, Science

NSF East Asia and Pacific Summer Institute (EAPSI) Fellow, National Science Foundation

Molecular Biophysics and Biochemistry Excellence in Teaching Award, Yale University

Yale Scientific Teaching Fellow, Yale University

NSF Predoctoral Fellow, National Science Foundation

Research Achievement and Academic Excellence Award, Syracuse University Biology Department

Barry M. Goldwater Scholar, Barry M. Goldwater Foundation

Syracuse University Academic Merit Scholar 

BCH 370 Physical Methods of Biochemistry - Rate My Professors